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Abstract We present an introduction to the Jarzynski rela-
tionship that makes a strong connection, for a thermodynamic
transformation, between the distribution of non-equilibrium
work values and the corresponding equilibrium free energy
differences. The relationship is discussed in the context of
sampling issues, high level parallel computing and conver-
gence criteria. We discuss three different applications by
our group: mechanical unfolding of peptides, mixed quan-
tum/classical free energy calculations in enzymes, and ligand
escape pathways.

1 Introduction

Free energies are central quantities to both thermodynamics
and kinetics, relating to experimentally determined proper-
ties such as equilibrium constants and reaction rates. Even
though proper computation of enthalpies is relatively sim-
ple at particular molecular conformations, the estimate of
the entropic factors requires sampling over large numbers
of conformations obeying proper thermodynamic weights.
This problem is by no means trivial, and it has been reviewed
extensively over the years [1]. Modern applications of free en-
ergy calculations in computational chemistry include ligand
binding [2], free energy profiles in mixed quantum–classical
enzymatic calculations [3] and hydration [4]. These calcula-
tions are done under (if possible) equilibrium conditions, or
with as full a sampling as possible.
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In this article we review recent work done using non-equi-
librium calculations of free energies, based on the so-called
Jarzynski relationship (JR) [5–8] which has been extended
and shown to be part of a subset of classical thermodynamics
dealing with very small systems, as well as with fluctuations
in macroscopic properties. In the 8 years since the original
proposal by Jarzynski, a very large number of publications
have appeared discussing derivations and re-derivations of
the original theorem [5–27], analysis and suggestions for uses
and improvements [10,16,28–38], experimental verifications
[28,39–42] and a comparatively smaller number of direct
applications of the technique [4,43–49]. The previous list is
by no means complete, nor is the division into categories
strict and well defined.

This article is structured as follows: first, we introduce the
JR and discuss its connection to more classical methods for
computation of free energies. We then present some of our
recent results involving three different applications or the JR
to biological systems, including some algorithmic comments
related to error analysis and efficiency.

2 Free energy calculations

The Gibbs free energy difference between two states A and
B is formally described by:

�GA→B = −�GB→A = GB − GA = − 1

β
ln

(
ZB

ZA

)

= − 1

β
ln

(∫
dr exp(−β HB)∫
dr exp(−β HA)

)
(1)

where �G represents the Gibbs free energy difference, β is
1/kBT and Z stands for the canonical partition functions,
which are explicitly written in terms of Boltzmann weights
in the right-hand side of Eq. (1).

Computational methods for the calculation of such quan-
tities have a long history. However, all of them have to sur-
mount an important hurdle: in order to compute the partition
function, very extensive (one might say complete) sampling
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of the phase space at both A and B must be done. This is
of course unattainable except for the simplest systems, and
one must rely on a number of approximations. One widely
used idea can be traced to Zwanzig [50] and is known as free
energy perturbation (FEP). It requires the calculation of the
energy difference between states A and B, ensemble averaged
over the initial ensemble A and is used as in:

�GA→B = − 1

β
ln 〈exp(−β(HB − HA)〉A (2)

The convergence of the exponential average is very slow,
unless the two states are close in their phase-space coverage.
Only conformations that have a low value of HB − HA have
a substantial weight in the average. This can be overcome by
defining an intermediate system with no physical realization.
van Gunsteren pioneered the use of single, unphysical refer-
ence states as a way to minimize the changes between initial
and final ensembles [51,52].

One can also define a non-physical Hamiltonian that var-
ies smoothly between A and B, as in:

H(λ) = H0 + λ [( H1 − H0 )] , (3)

with λ ∈ [0, 1]. Other forms of the interpolation scheme can
be used as long as the limiting cases for λ → 0 (H (0) = HA)
and λ → 1 (H (1) = HB) are obeyed.

This interpolation can be used to compute the free energy
difference of Eq. (2) as:

�G0→1 = − 1

β

N−1∑
k=1

ln 〈exp (−β(Hk+1 − Hk)〉k (4)

Note that in this formulation, there is no need to directly com-
pute the end-to-end enthalpy difference as in Eq. (2) highly
increasing the convergence rate.

The definition of the λ-dependent Hamiltonian allows for
the computation of free energy derivatives with respect to
lambda, which in turns enables the calculation of the free
energy difference between A and B using the so-called ther-
modynamics integration method (TI).

�G0→1 =
1∫

0

dλ

〈
∂ H(λ)

∂λ

〉

λ

(5)

If one thinks about the system as evolving from A to B
with a time dependent Hamiltonian, then the above equa-
tions can be re-written simply by assuming a perturbation
parameter, lambda as λ = λ (t) (which obviously, accord-
ing to Eq. (3), immediately means a Hamiltonian H(t)) and
associated definition of work as in:

W (t) =
t∫

0

∂ H(t)

∂t
dt (6)

The second law of thermodynamics requires that the
ensemble average of the work done onto the system by an
external perturbation (the change from A to B) be larger than

or equal to the free energy difference, with the offset being
the dissipative (non-useful) work.

〈WA→B〉A ≥ �GA→B (7)

The average is taken over different realizations of the
transformation, each starting from a different conformation
sampled from the equilibrium ensemble of state A. Under
a quasi-static (QS) transformation from A to B (in infinite
time), the perturbation is continuously very close to equilib-
rium conditions, and only then is the work exactly equal to the
free energy difference. For true QS changes, all realizations
of the experiment will give the same value of W , and a well
defined value for �G. This is equivalent to the statement that
the distribution of work values under a QS transformation is
a delta function at the exact value of �G.

It is then clear than under non-QS changes from A to B,
a number of statements must be true:

1. The average work will be larger than delta G.〈W 〉 >
�G

2. The distribution of work values will have a finite width.
σ 2

W > 0.
3. Any individual realization could give rise to work val-

ues lower than �G. ∃i/Wi < �G.

3 The original Jarzynski method

Even though these are interesting points, they were of only
peripheral interest until a seminal article by Jarzynski in 1997
[5]. In that paper, he proved the so-called JR that states:

�G A→B = − 1

β
ln 〈exp(−βWA→B)〉A

= − 1

β
ln

N∑
i=1

1

N
exp(−βWi,A→B) (8)

where Wi is the out of equilibrium work (for the i th real-
ization) done onto the system when going from state A to
state B, and the exponential average is done over an equi-
librium ensemble for state A only. This formula seems very
counterintuitive at first, since it makes a clear connection
between non-equilibrium work values (which are, by defi-
nition, path dependent), with the equilibrium free energy,
a state function (and hence not path dependent). Moreover,
the only two requirements for this equality to work are that
the initial ensemble over state A be equilibrated, and that the
exponential average be converged, which in turns require a
large number of realizations of the transformation. There is
no requirement as to how the switch from state A to state
B should be done (in a computational implementation: how
fast can one switch the system’s Hamiltonian from A to B).

First, let us see that this setup reduces to known expres-
sions under certain limits. Clearly, if the switch is done infi-
nitely slowly, then the transformation is QS. In that case, the
work W is equal to the free energy (there is no dissipative
work) and the JR is obviously true. In the other extreme, one
could switch from state A to state B instantaneously. In that
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regime, the work done on the system is simply the enthalpy
change between the initial and final points as in:

�GA→B = − 1

β
ln 〈exp(−β(HB − HA))〉A (9)

Note that this is simply FEP and that Eq. (9) is the same
as the previously described Eq. (2).

In a general situation, the transformation of the system
from A to B and the algorithmic application of the JR can
be seen in Fig. 1. At an initial state A (λ = 0) the system is
equilibrated. This is represented by the vertical line at left.
This initial ensemble could be equilibrated by long molecu-
lar dynamics or Monte Carlo runs, or by advanced sampling
techniques such as replica exchange [53]. Once this is done,
a number N of initial snapshots are taken from the initial
ensemble. They are then transformed into state B (λ = 1)
(and all states in between) at a finite rate. The work for each
realization is then computed, and the overall free energy is
extracted by using the JR as shown in Eq. (8).

The demonstration of the validity of the JR is beyond the
scope of this review, but the interested reader is encouraged
to read the original article by Jarzynski [5]. However, it is
important to provide a simple explanation of why this seem-
ingly strange equality might work. Figure 2 gives a hint as
to the behavior of the system. Under near-equilibrium con-
ditions, the distribution of work values could be expected
to be roughly Gaussian (this requirement is not needed, but
makes explanations clearer). The vertical line at 0 unit of
work (arbitrary units) represents the exact free energy differ-
ence in going from A to B. Under QS conditions, the distri-
bution of work values is very nearly a delta function (a very
narrow Gaussian). However, under any transformation rate
larger than zero, two things happen at the same time. The
average work gets larger as the rate increases while the width
of the work distribution also increases. The JR requires a
weighted average of this distribution with an exponential set

Fig. 1 Schematic view of the multiple steering mechanism used for this
article

of weights. The net effect of this non-linear averaging is to
pick, from the work distribution, trajectories that are low in
work values. The number of these ‘tail’ trajectories of course
decreases drastically with the transformation rate, and hence
the effort required to converge the non-exponential average
increases quickly. There is also a result seemingly contradict-
ing the second law of thermodynamics: the probability of an
individual realization of the transformation from A to B hav-
ing work lower than the free energy difference between A
and B is not zero. This would seem to indicate a negative
dissipative work, which is of course not possible. An impor-
tant point to remember is that the second law only applies
to macroscopic systems (ensemble averages) and single real-
izations are ‘allowed’ to have low values of work. The proper
quantity to compare to the free energy is the average work,
which indeed is always larger than �G.

Given the exponential nature of the average, numerical
convergence is an important issue. Early work of Hermans
[29] has a remarkable connection to the JR. Hermans
proposed, using fluctuation dissipation and linear response
arguments, that if one performed many finite-time transfor-
mations starting from different initial conditions, one could
improve on the simple linear average used until then, by mak-
ing use of the standard deviation of the work calculations
(or measured).

�G ≈ 〈W 〉 − β

2
σ 2

W (10)

This relationship, which has been substantially used in
the literature, turns out to be simply a cumulant expansion
of Eq. (8). This could be shown in two ways, with an inter-
esting relation to each other. First, if one assumes a Gauss-
ian distribution of work values (a reasonable zeroth order
approximation), then Eq. (10) is exact. If one describes the
exponential average as a cumulant expansion, then Eq. (10)
becomes simply the first and second order cumulants. There
are also higher order cumulants (which are all exactly zero in
the case of linear response), which alternate in sign and are
very slowly converging.

The actual algorithmic advantage of the JR is not imme-
diately obvious. Umbrella sampling or other methods could
very well be as efficient in terms of computational require-
ments. The JR, by shifting the burden of equilibration to only
the initial state, lifts the requirement for a slow, QS transfor-
mation. This is a perfect application for modern highly par-
allel, distributed computational systems. One should, in that
environment, cease to discuss efficiency in terms of CPU
time and instead focus on wall clock (return to user) time.
Under these conditions, a trivially parallel JR application will
finish in the time required for an individual pulling, with a
very small overhead associated with data management and
transmission. In this intrinsic parallelism resides the compu-
tational promise of the JR. Under conditions where a single
(or a small number of CPUs) are available to the user, tra-
ditional methods are probably more appropriate. It is in the
large number of CPUs available for short times that the JR
becomes very useful.
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Fig. 2 Schematic work distributions for different switching rates

Fig. 3 Ace-Alanine8-NMe unfolded from α-helix to a fully-extended state by mechanical pulling

4 Three examples of the application of the JR

4.1 Mechanical stretching in biopolymers

In work to be submitted shortly to the Journal of Chemical
Physics we use molecular dynamics to simulate unfolding of
a simple Ace-Alanine8-NMe peptide molecule by mechani-
cal pulling (Fig. 3). The Free energy of pulling is calculated
using the JR method and compared with conventional free
energy calculation methods.

The Ace-Alanine8-NMe peptide molecule is initially built
in an all α-helical state. Two harmonic potentials are used:
one attached to the Ace end with a force constant of
10,000 kcal/mol Å−2 is to effectively fix that end in space,
and a force constant 100 kcal/mol Å−2 is used to restrain the
N atom in the NMe residue at the other end. The distance
in between is initially 13.2 Å. The simulation has been per-
formed in vacuum (as a proof of principle of the method),
without cutoffs for the non-bonded interactions. An initial
equilibrium ensemble of configurations is generated by run-
ning molecular dynamics for 200 ns with both ends fixed, or,
at pulling length 0.0 Å. As we will show later, the requirement

of initial equilibration is stringent for a correct application of
the JR. A number of published applications do not control
this problem and might very well be flawed.

To pull the molecule, the second restraining potential is
moved at a constant velocity. A (local) MPI implementation
of the molecular dynamics program TINKER [54] is used on
configurations drawn from an initially equilibrated ensemble
to pull them into fully-extended states. Different pulling rates
(1.0, 0.1, 0.01 and 0.001 Å/ps) are implemented to test Jar-
zynski’s equality. The number of pulls was 20,000, 2,000,
200 and 20 for the different rates.

For comparison purpose the exact free energy curve is
computed by pulling at an ultra slow rate (10−4 Å/ps). This
free energy calculation method is conventionally known as
“slow growth” (SG). The curve obtained is plotted in Fig. 4.
The validity is confirmed by running multiple forward and
reverse pullings, from which free energy curves are com-
puted. All realizations superimpose in their work values,
which guarantees reversibility.

Figure 5 shows the work distributions obtained for differ-
ent pulling rates at different pulling lengths. The exact free
energy curve of Fig. 4 is plotted in the “pulling length – work”
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Fig. 4 Equilibrium free energy of pulling of Ace-Alanine8-NMe from
α-helix to a fully-extended state

plane. From these distributions, work averages and free en-
ergy differences by JE are calculated and plotted in Fig. 6.

In accordance with Fig. 2, we see that the work distribu-
tion shifts and broadens as the pulling rate increases (more
irreversibility). There is clearly sufficient sampling of the
tail region in the two slowest rates (1 and 0.1 Å/ps), but the
0.01 Å/ps will probably fail when the distances exceed 6 Å.

In Fig. 6 we see that the JR estimate yield very good
results when the pulling rate is slow or the pulling length is
small. However, at larger pulling lengths, or for faster pull-
ings, the work distribution moves away from the exact free
energy difference. The total number of pullings will eventu-
ally become insufficient to yield correct free energy differ-
ences.

The JE method yields good convergence for slow pullings
(0.001, 0.010, and 0.100 Å/ps) for a relatively small amount
of total computing time, for which conventional FEP method
fails to converge. It’s not obvious that the JR method con-
sumes less computing time than the SG method does. How-
ever, as described above, faster pulling rates allow for a faster
return-to-user of the results by means of parallel computing.

4.2 QM/MM free energy calculations in enzymatic systems

We shall illustrate an application of the JR in the context
of an efficient quantum-mechanical–molecular-mechanical
(QM–MM) density functional theory (DFT) based scheme
optimized for biomolecules. This section’s results have been
partly published elsewhere [55].

We study the conversion reaction of chorismate to pre-
phenate, catalyzed by the B. Subtilis enzyme chorismate mu-
tase, which has been extensively studied [56–62]. We have
previously studied this system within the same setup as in
the present article, using DFT and MM, computing activa-
tion energies [56].

Our QM–MM scheme uses, for the description of the
QM region, a very efficient implementation DFT based on
numerical basis sets called (Spanish initiative for electronic
simulation of thousands of atoms SIESTA) [63].

The calculations have been performed employing a start-
ing structure obtained from B. subtilis in the Protein Data

Bank (1COM) [64] solvated with 496 TIP3P water mole-
cules. The total system included the 24 substrate atoms (QM)
plus 7115 MM atoms. The systems was equilibrated per-
forming classical MD simulations using the Wang et al. [42]
force field parametrization [65], as included in the Amber 7.0
package, taking both chorismate and prephenate as solutes.

From the last 2 ns of the classical simulation of choris-
mate and prephenate + chorismate mutase, we collected 20
starting structures of each (40 total), for our multiple steer-
ing QM–MM simulations. Each of these was relaxed at the
QM–MM level for 0.5 ps at 300 K. The substrates moieties
were treated QM at the DFT level and the rest of the system
was treated at the MM level using the Wang et al. [42] force
field parametrization.

Only atoms within a sphere of 15 Å from the QM struc-
ture were allowed to move. The reaction coordinate of this
reaction, ξ = dcc − dco has already been shown to represent
adequately the process, and is shown in Fig. 7.

These 20+20 QM–MM relaxed structures were used as
starting points for the multiple steering molecular dynamics
(MSMD) runs. The reaction coordinate was changed from
ξ = 2.0 Å to ξ = −2.0 Å for a set of 15+15 QM–MM struc-
tures at a constant speed of 2 Å/ps, and for another set of
5+5 QM–MM structures at a lower speed of 1 Å/ps. A force
constant of 200 kcal/(molÅ) was used in all cases. For com-
parison, the potential of mean force was computed using an
umbrella sampling scheme [66]. A total of 12 windows sim-
ulations of 5 ps each have been employed, using as starting
structures the snapshots of the constrained energy minimiza-
tions performed previously.

All QM and QM–MM calculations have been performed
using a DZVP basis sets, with a pseudoatomic orbital energy
shift of 50 meV and the generalized gradient approximation
of Perdew, Burke and Ernzerhof.

In Fig. 8a we show the values of accumulated work versus
ξ for chorismate to prephenate conversion for the 20 repeti-
tions. Also shown is the standard deviation of the work values.
This data should be trusted from ξ = 2 Å to ξ = −0.5 Å, at
which point σw ≥ 4kBT. Figure 8b has the same data starting
at the prephenate side of the reaction. It is even clearer that
this data is good only from ξ = −2 Å to ξ = +0.5 Å.

Figure 9, in red, shows the Jarzynski estimator for the free
energy of set 1 (15+15 structures, pulling speed of 2 Å/ps). In
green, we present the same results for set 2 (5+5 structures,
pulling speed of 1 Å/ps). They both have been obtained by
joining the free energies obtained by exponential averaging of
work from Fig. 8. The �G‡ values obtained are 7.6 kcal/mol
for the Jarzynski estimator (set of 15+15 QM–MM structures
and pulling speed of of 2 Å/ps) and 7.5 kcal/mol for the um-
brella sampling calculations. We can conclude that the differ-
ent pulling velocities do not change quantitatively the �G‡

values obtained. Although our �G‡ values are lower com-
pared to the experimental ones, (8 kcal/mol approximately vs.
15 kcal/mol) due to flaws in our DFT description, the calcu-
lated entropic effect is negative, in agreement with the exper-
imental value (−9.1 eu). Previous calculation of the entropic
effect for this reaction in [62] have computed the wrong sign.
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Fig. 5 Work distributions for different pulling rates

Fig. 6 Work averages and free energy differences calculated by Jarzyn-
ski’s relationship for various pulling rates

Fig. 7 Chorismate to prephenate conversion reaction

4.3 Ligand diffusion in globins

Mycobacterium tuberculosis, the causative agent of human
tuberculosis, is responsible for more than a million deaths
per year. In healthy individuals, the infection is contained
by the immune system, which forces the bacteria into dor-
mancy through a nitro-oxidative stress related mechanism.
The toxic effects of NO can be reduced or even eliminated
by the development of resistance mechanisms in microor-
ganisms. One of such mechanisms consists in the oxidation

of nitric oxide with heme bound O2 to yield the innocuous
nitrate ion [67]

Fe(II)O2 + NO → Fe(III) + NO3.

M. tuberculosis encodes two small heme proteins [68],
which belong to the family of the recently discovered trun-
cated hemoglobins (TrHb) (for a recent review see Milani
et al. [69]). The proximal HisF8 heme linked residue is con-
served throughout the Hb and trHb families, and a distal
TyrB10 is conserved in almost all the trHb family members
sequenced to date.

Inspection of the available X-ray structures from several
trHbs reveals that they host a protein tunnel/cavity system that
connects the heme moiety with the exterior [70]. Recently it
has been shown that these proteins can bind Xe atoms in the
crystalline state, and that the Xe atoms map along the tun-
nel cavity system [71,72]. The tunnel, whose inner surface is
mainly lined with non-polar residues, is about 20 Å long and
is oriented perpendicular to the heme plane.

In a recent work we showed that NO reaction with coor-
dinated oxygen is barrierless once NO is placed in the ac-
tive site in M. tuberculosis trHb N, therefore once oxygen is
bound, NO diffusion into the heme cavity is the rate limiting
step [70].

In this section we use the JR to shed light on the ligand
migration process along the tunnel/cavity system of M. tuber-
culosis trHbN. The chosen reaction coordinate λ was cho-
sen as the iron–ligand distance. The force constant used was
200 kcal/molÅ2. The pulling velocities used were 0.05 and
0.1 Å/ps. No significant differences in the �G profiles (less
than 1 kcal/mol) were observed for both velocities for any
given set of runs. To reconstruct the free energy profile for
the tunnel the following sets of MSMD runs were performed:
starting from equilibrated MD structures with λ(t = 0) of 9,
13, and 17 Å, ten JR runs were performed in each direction
(forward/exit and backward/entry) for each of the two pull-
ing velocities. In cases where two overlapping profiles were
obtained (from entry and exit sets), we confirmed that both
of them matched.
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Fig. 8 a Chorismate to prephenate work for the 20 runs (colored) and the standard deviation (thick black line). b Prephenate to chorismate work
for the 20 runs (colored) and the standard deviation (thick black line)

Fig. 9 Free energy profile from chorismate (ξ ≈ 1.75 Å) to prephenate
(ξ ≈ −1.75 Å), calculated using Jarzynski’s equality for set 1 (red), for
set 2 (green) and umbrella sampling scheme (blue)

Fig. 10 Blue balls position of the ligand along the MSMD run (each
point corresponds to each snapshot, taken at every picosecond). Pro-
tein: the protein coordinates are the mean position of the run. Red balls
X-ray determined Xe atom docking positions

Fig. 11 Free energy profile (kcal/mol) along the tunnel (the reaction
coordinate is defined as the Fe–N distance)

Analysis of the ligand position along the tunnel for several
trajectories (Fig. 10) confirms that the ligand moves along the
tunnel. The X-ray observed Xe binding sites match the trajec-
tories described by the ligand along the simulations. The sec-
ondary docking sites corresponding to the free energy local
minima in the free energy profile (Fig. 11), agree very well
with the experimental Xe X-ray experiments. The simula-
tion offers, as an added value, energetic information such as
barrier heights and the possibility of obtaining microscopic
insights about the interactions that govern the ligand diffu-
sion process.

The free energy profiles and Xe X-ray derived data suggest
that trHbs can accommodate several small neutral ligands. In
this way the tunnels due to its apolar nature can significantly
increase the solubility of molecules such as CO, O2 or NO
relative to the aqueous phase, acting as their concentrators
[73,74].

5 Conclusions

The calculation of free energies of many processes has a long
history within computational chemistry. With the introduction
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of the JR, and the recent formal and computational work
associated with it, the field is ripe to witness a widespread
use of this technique. As the ideas find their way into widely
accessible software, we are bound to see new, unpredicted
applications.
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